Astronomy: Distance and Midpoint Between Two Celestial Objects
Stars and celestial objects have the equatorial coordinates ( α, δ, R ) where:
α = right ascension in hours, minutes, and seconds
δ = declination in degrees, minutes, and seconds
R = distance to the celestial about (in light years, astronomical units, etc)
Convert α and δ to decimal degrees:
α = (hours + minutes/60 + seconds/3600) * 15
δ = sign(δ) * ( degrees + minutes/60 + seconds/3600 )
However, calculating distance between two points in space requires that we have cartesian coordinates (x, y, z). The conversion formulas to go from equatorial to cartesian coordinates are:
x = R * cos δ * sin α
y = R * cos δ * cos α
z = R * sin δ
For completeness, here are the conversion formulas to from cartesian to equatorial coordinates:
R = √(x^2 + y^2 + z^2)
δ = asin(z/R)
α = atan(y/x) (pay attention to the quadrant!). Alternatively: α = arg(x + i*y)
The distance formula between two points in space is:
D = √( (x2  x1)^2 + (y2  y1)^2 + (z2  z1)^2 )
Source: http://en.m.wikipedia.org/wiki/Equatorial_coordinate_system
Example
Find the distance between Sagittarius A* (center of the Milky Way Galaxy) and the Andromeda Galaxy (M31).
Equatorial Coordinates:
From Wolfram Alpha: ( http://m.wolframalpha.com )
Sagittarius A*:
R = 24,824 light years
α = 17h45m40s = 266.42°
δ = 29°0'28" = 29.008°
Andromeda Galaxy:
R = 2,571,000 light years
α = 42m40s = 10.68°
δ = 41°16'8" = 41.269°
Converting to the cartesian system:
Sagittarius A*:
x = 21,667.514038
y = 1,355.611275
z = 12,037.945401
Andromeda Galaxy:
x = 358,122.65578
y = 1,898,943.67736
z = 1,695,818.99789
Calculation:
D = √( (21,667.514038  358,122.65578)^2 + (1,355.611275  1,898,943.67736)^2
+ (12,037.945401  1,695,818.99789)^2 ) ≈ 2,583,051.16059
The distance between Sagittarius A* and the Andromeda Galaxy is about 2.583 million light years.
Happy Thanksgiving, or Day of Thanks, wherever you are. Please be safe and use good judgement. We need all the positive we can get on Earth, and in the cosmos. Cheers!
Eddie
This blog is property of Edward Shore. 2014
A blog is that is all about mathematics and calculators, two of my passions in life.
Wednesday, November 26, 2014
Astronomy: Distance and Midpoint Between Two Celestial Objects
Subscribe to:
Post Comments (Atom)
Curve Fitting: Fitting to the Curve y = a*e^(b*x^2)
Curve Fitting: Fitting to the Curve y = a*e^(b*x^2) Introduction This blog is to fit data to the equation y = a*e^(b*x^2). A f...

Casio fx991EX Classwiz Review Casio FX991EX The next incarnation of the fx991 line of Casio calculators is the fx991 EX. ...

One of the missing features of the TI82/83/84 family is the ability to convert between bases. Here are two programs in TIBasic to help...

TI36X Pro Review This is a review of the TI36X Pro Calculator by Texas Instruments. History Originally, this was the TI30X Pro that w...
No comments:
Post a Comment